Perlen der Informatik 2
7. Übung

1 Unbounded natural numbers

Hardware platforms have a limit on the largest number they can represent. This is normally fixed by the bit lengths of registers and ALUs used. In order to be able to perform calculations that require arbitrarily large numbers, the provided arithmetic operations need to be extended in order for them to work on an abstract data type representing numbers of arbitrary size.

In this exercise we will build and verify an implementation for such big_nats, a type representing natural numbers of arbitrary size.

1.1 Representation

A big_nat is represented as a list of natural numbers (cells) in a range supported by the target machine, in ascending significance. In our case, this will be all natural numbers in the range \([0, \text{base} - 1]\).

Note that nats in Isabelle have arbitrary size.

First, we give such big_nats a semantic by means of a predicate valid :: nat ⇒ nat list ⇒ bool which takes a base and checks if the given big_nat is valid.

The next step is to specify an evaluation function val :: nat ⇒ nat list ⇒ nat that, for a given base, computes the actual natural number represented by a specific big_nat.

Computations will usually involve a carry from a cell to a cell with higher significance. These can easily be expressed using operations div d and mod d, where d again is the base. For this purpose we will need some auxiliary lemmas which are, alas, tricky to prove. You need not type these yourself, they are available from the website of this course:

```
lemma plus_div_less_self:
  fixes a b c :: nat
  assumes "a < c" and "b < c"
  shows "(a + b) div c < c"
proof (cases "2 ≤ c")
  case True
  from assms have "a + b ≤ c + (c - 1)" by simp
  then have "(a + b) div c ≤ (c + (c - 1)) div c" by (rule div_le_mono)
  moreover have "(c + (c - 1)) div c < 2" using '2 ≤ c'
    by (simp only: div_add_self1) simp
  ultimately have "(a + b) div c < 2" using '2 ≤ c'
    with '2 ≤ c' show "(a + b) div c < c" by auto
  next
  case False then show ?thesis using assms by simp
```
lemma times_div_less_self:
 fixes a b c :: nat
 assumes "a < c" and "b < c"
 shows "(a * b) div c < c"
proof (cases "2 ≤ c")
 case True
 then obtain d where "c = Suc d" by (cases c) simp_all
 then have "c * c - 1 = (c - 1) + (c - 1) * c" by simp
 also have "((c * c - 1) div c) = ((c - 1) + (c - 1) * c) div c" by simp
 finally have "c - 1 + (c - 1) div c" using 'c = Suc d'
 also have "... = c - 1" using 'c = Suc d' by simp
 from assms have "a * b < c * c" by (simp add: mult_strict_mono)
 then have "a * b ≤ c * c - 1" by simp
 with dec_c have "(a * b) div c ≤ c - 1" by simp
 with thesis show "(a * b) div c < c" using 'c = Suc d' by simp
next
 case False
 then have "c = 0 ∨ c = 1" by arith
 then show thesis using assms by simp
qed

Further algebraic and arithmetic lemmas helpful during proofs can be obtained using the find_theorems command. Note that in most situations you should restrict your search to lemmas on natural numbers (or more general) by providing suitable explicit type annotations in the search patterns.

1.2 Addition

Define a function add :: nat ⇒ nat list ⇒ nat list ⇒ nat list that adds two big_nats with the same base. Make sure that your algorithm preserves the validity of the big_nat representation.

Using val, verify formally that your function add computes the sum of two big_nats correctly.

Using valid, verify formally that your function add preserves the validity of the big_nat representation.

Hints:

- Use auxiliary functions if necessary.
- Perform induction with a specific induction rule and generalization.

1.3 Multiplication

Define a function mult :: nat ⇒ nat list ⇒ nat list ⇒ nat list that multiplies two big_nats with the same base. You may use already existing operations. Make sure that your algorithm
preserves the validity of the \texttt{big_nat} representation.

Using \texttt{val}, verify formally that your function \texttt{mult} computes the product of two \texttt{big_nats} correctly.

Using \texttt{valid}, verify formally that your function \texttt{mult} preserves the validity of the \texttt{big_nat} representation.

\textit{Hints:}
\begin{itemize}
 \item See above.
 \item Don’t be irritated if things turn out to be considerably easier when expecting the opposite.
\end{itemize}