Choose your weapon - entry level

Bernhard Schätz - Perlen der Informatik
Example: Synchronized Producer Consumer

- **wait**: produces, exchanges
- **write**: reads, produces, exchanges
- **read**: exchanges, consumes
- **ready**: exchanges, consumes
- **consume**: waits, ready
- **exchange**: waits, ready, exchanges
- **produce**: waits, reads, exchanges
- **write, read**: produces, exchanges
Models

Classes of models:

- **Algebraic model**: Specification in form of syntactic formulae
 - Concepts: Process
 - Verification: Term equivalence
 - Example: ACP
- **Operational model**: Specification in form of abstract machine
 - Concepts: State, (labeled) transition
 - Verification: (Bi-)Simulation
 - Example: CCS
- **Denotational model**: Specification in form of observable behavior
 - Concepts: Event, (observation) trace
 - Verification: Behavior Inclusion
 - Example: TCSP
Algebraic Semantics: Syntax

Syntax: Process terms over alphabet A

- Blocking process: 0
- Action prefix for some a of A: $a.P$
- Alternative choice: $P + Q$
- Parallel composition: $P | Q$
- (Mutual) Recursion: $P = Q$

\[
S = p.x.S
\]
\[
R = \overline{x}.c.R
\]
\[
E = p.\tau.B
\]
\[
B = c.E + p.F
\]
\[
P = S | R
\]
\[
F = c.\tau.B
\]
Algebraic Semantics: Rules

\[\begin{align*}
0 + P &= P \\
P + P &= P \\
P + Q &= Q + P \\
P + (Q + R) &= (P + Q) + R \\
0 | P &= 0 \\
P | Q &= Q | P \\
P | (Q | R) &= (P | Q) | R \\
a.P | \overline{a}.Q &= \tau.P | Q \\
a.P | b.Q &= a.(P | b.Q) + b.(a.P | Q) \\
\end{align*} \]

\[P = S[P] \land Q = T[Q] \land P = Q \Rightarrow S[P] = T[Q] \]

\[P = Q \]

Algebraic semantics:
- Relates equivalent processes
- Defined as equations of process terms
Algebraic Semantics: Example

Example: Proving equivalence of process terms S_1 and S_2

- Approach:
 - Construct chain of equations
 - Use inductive principles for recursion
Classes of models:

- **Algebraic model**: Specification in form of syntactic formulae
 - Concepts: Process
 - Verification: Term equivalence
 - Example: ACP

- **Operational model**: Specification in form of abstract machine
 - Concepts: State, (labeled) transition
 - Verification: (Bi-)Simulation
 - Example: CCS

- **Denotational model**: Specification in form of observable behavior
 - Concepts: Event, (observation) trace
 - Verification: Behavior Inclusion
 - Example: TCSP
Operational Semantics: Syntax

Syntax: Process terms over alphabet A

- Blocking process: 0
- Action prefix for some a or τ of A: $a.P$
- Alternative choice: $P + Q$
- Parallel composition: $P | Q$
- (Mutual) Recursion: $P = Q$

\[
S = p.x.S \\
R = x.c.R \\
E = p.\tau.B \\
B = c.E + p.F \\
F = c.\tau.B \\
P = S | R
\]
Operational semantics:

- Defined by (labeled) transition relation
- Constructed in terms of computation steps
 - Start state
 - (Inter)action
 - End state
- Structured operational semantics: Process terms as state space
Example: Constructing execution steps

- Construct tableau of rules
- Use structure of process terms
 - Break down terms into atomic terms
 - Build up tableau using rules
Operational Semantics: Verification

\[\approx \text{ is a (strong) bisimulation } \iff \forall P, Q, a. \]

\[
P \approx Q \Rightarrow (\forall P'. P \xrightarrow{a} P' \Rightarrow \exists Q'. Q \xrightarrow{a} Q' \land P' \approx Q') \land \\
(\forall Q'. Q \xrightarrow{a} Q' \Rightarrow \exists P'. P \xrightarrow{a} P' \land P' \approx Q')
\]

Verification:
- Relation between process terms \(S_1 \) and \(S_2 \)
- Based on transition relation:
 - Strong Bisimilarity: \(\exists \approx \cdot S_1 \approx S_2 \)
 - Weak bisimilarity: Bisimilarity modulo \(\tau \)
 - Simulation relation: Asymmetric variant
Operational Semantics: Example

Example: Proving process bisimilarity of process terms S_1 and S_2

- **Approach:**
 - Construct largest bisimulation relation over transition relation
 - Check containment of process terms S_1 and S_2

- **Automatic construction:**
 - Using fixed point induction
 - Using 1-step-equivalence as induction principle
Models

Classes of models:

• **Algebraic model**: Specification in form of syntactic formulae
 – Concepts: Process
 – Verification: Term equivalence
 – Example: ACP

• **Operational model**: Specification in form of abstract machine
 – Concepts: State, (labeled) transition
 – Verification: (Bi-)Simulation
 – Example: CCS

• **Denotational model**: Specification in form of observable behavior
 – Concepts: Event, (observation) trace
 – Verification: Behavior Inclusion
 – Example: TCSP
Denotational Semantics: Syntax

\[
S = \mu X : p.x.X \\
R = \mu X : x.c.X \\
E = p.B \\
B = \mu X : c.p.X + p.c.X \\
P = S \mid R
\]

Syntax: Process terms over alphabet \(A \)

- Blocking process: \(0 \)
- Action prefix for some \(a \) of \(A \): \(a.P \)
- Alternative choice: \(P + Q \)
- Parallel composition: \(P \mid Q \)
- (Mutual) Recursion: \(\mu P : T(P) \)
Denotational Semantics: Mapping

\[
F[0] = \{(\langle\rangle, R) \mid R \subseteq A\}
\]
\[
F[a.P] = \{(\langle\rangle, R) \mid R \subseteq A \setminus \{a\}\} \cup \{(a \cdot t, R) \mid (t, R) \in F[P]\}
\]
\[
F[P + Q] = \{(t, R) \mid ((t, R) \in F[P] \cap F[Q]) \lor (t \neq \langle\rangle \land (t, R) \in F[P] \cup F[Q])\}
\]
\[
F[P \mid Q] = \{(t, R_1 \cup R_2) \mid (t \uparrow \alpha P, R_1) \in F[P] \land (t \uparrow \alpha Q, R_2) \in F[Q]\}
\]
\[
F[\mu P : T(P)] = \text{lfp}_i F[T^i](A^* \times 2^A)
\]

Denotational semantics:

- Defined by mapping into (Scott) domain
- Constructed via inductive definition
 - Compositional
 - Aligned according to process term structure
- Recursive definitions: Using fixed point induction
Denotational Semantics: Example

\[F[S] = \{(\leftrightarrow, \emptyset), (\leftrightarrow, \{x\}), (p, \emptyset), (p, \{p\}), (p \cdot x, \emptyset), (p \cdot x, \{x\}), \ldots\} \]

\[F[R] = \{(\leftrightarrow, \emptyset), (\leftrightarrow, \{c\}), (x, \emptyset), (x, \{x\}), (x \cdot c, \emptyset), (x \cdot c, \{c\}), \ldots\} \]

\[F[S \mid R] = \{(\leftrightarrow, \emptyset), (\leftrightarrow, \{c\}), (\leftrightarrow, \{x\}), (\leftrightarrow, \{c, x\}),
(p, \emptyset), (p, \{p\}), (p, \{c\}), (p, \{p, c\}),
(p \cdot x, \emptyset), (p \cdot x, \{x\}), \ldots\} \]

Example: Constructing behaviors

- Construct behaviors as elements of Scott domain
- Use structure of process terms
 - Break down terms into atomic terms
 - Build up behaviors using rules
 - Use fixed point induction
Operational Semantics: Verification

Verification:
• Relation between process terms S_1 and S_2
• Based on denotation of process terms:
 – Equivalence: $P \leq Q \land Q \leq P$
 – Refinement: Ordering in Scott domain

\[P \leq Q \iff F[P] \subseteq F[Q] \]
Operational Semantics: Example

\[S = \mu X : p.x.X \]
\[R = \mu X : x.c.X \]
\[E = p.B \]
\[B = \mu X : c.p.X + p.c.X \]
\[P = S | R \]

\[F[S | R] = \{ (\langle \rangle, \emptyset), (\langle \rangle, \{ c \}), (\langle \rangle, \{ x \}), (\langle \rangle, \{ c, x \}), \]
\[(p, \emptyset), (p, \{ p \}), (p, \{ c \}), (p, \{ p, c \}), \]
\[(p \cdot x, \emptyset), (p \cdot x, \{ x \}), ... \} \]

= \[F[E] \]

Example: Proving equivalence of process terms \(S_1 \) and \(S_2 \)

- Approach:
 - Construct denotation of process terms \(S_1 \) and \(S_2 \)
 - Check set equivalence
Conclusion

• Algebraic Semantics
 – Advantage: Semantics is term language
 – Disadvantages: Consistency, implementability

• Operational Semantics:
 – Advantages: Implementability
 – Disadvantages: Verification reduced to simulation

• Denotational Semantics:
 – Advantages: Observational approach
 – Disadvantages: Complex