A Generic API Regarding On-Demand QoS Support Over Heterogeneous Wireless Networks For QoS Aware Applications

5th World Wireless Congress 2004, San Francisco
04.06.2004
Maximilian Zuendt, Peter Dornbusch
Agenda

- Introduction and Motivation
 - Application QoS Requirements, Network Provisioning of QoS and User Requirements

- Concept of Client-Based Generic QoS API
 - Client Architecture Requirements
 - QoS Aware Application Signalling

- Current Prototype Implementation
 - Based on Mobile IPv4
 - Problems of (Real-Time) Network Monitoring

- Outlook on Future Work
Motivation

- Heterogeneous Networks – The variety of different wireless access technologies (e.g. GSM, UMTS, Wireless LAN etc.) and their parallel existence – a highly dynamic environment!
 → Multimode Terminals
 → QoS Support to a certain degree

- Mobility Software enabling “Seamless Vertical Roaming” (e.g. Birdstep, Dynamics HUT etc.) based on Mobile IP (v4 now, v6 sometime in the future)

- QoS Provisioning: End-to-End provided by the network(s), hence for the service → QoS preceived by the User

- User Awareness on Cost and Billing but transparency to Application / Network Requirements

- Application programmers should not have to deal with specifics of a distinct access network and its implemented QoS features and supported protocols (Intserv/Diffserv, RSVP etc.).
Convergence of Application Needs and Network Capabilities

Application Requirements
- Bitrate, Delay, Jitter, BER, Availability

- Initialization
- Adaptation/Negotiation
- (Graceful) Termination

Generic QoS API

Variety of Access Networks and Supported QoS Features
- UMTS
- GSM/GPRS
- WLAN

Content Adaptation
Adaptative Playout
Intserv/Diffserv RSVP..
Resulting Client Architecture Requirements

- Access Network Management: Monitoring, Discovery and “Seamless” Switching – Vertical Handover
- Matching of QoS-Aware Application Requirements with current Access Network Available QoS.
- Network selection based on a fixed set parameters: Availability, Bandwidth, Bit Error Rate, Delay and Jitter
- Matching of Application QoS with Internet QoS (e.g. DiffServ)
- Security Support (e.g. VPN, IPSec)
- Standards where Applicable.
The Client Architecture based on Mobile IPv4

- **Shared Database** holds Network, Application and User Profiles
- Communication Provider sets up logical and physical connections → Matches between profiles → Communicates with Location Server
- Mobility Manager monitors network interfaces and updates routing table information
- Build upon the Dynamics Mobile IP Client
Signaling between Application and Communication-API

- The Communication-API allows a QoS Aware Application to specify/negotiate its QoS Requirements
- The Communication Provider Matches Application QoS Requirements with currently available Networks Registered in Network Profile
Signaling within the Client Architecture

- **Application Database (SD)**
 - **Application Profiles**
 - Prot.: HTTP
 - Service: BE
 - TP: a
 - D: b
 - DV: c
 - ER: d

- **User Profiles**

- **Network Profiles**
 - ID: 1
 - Type: UMTS
 - Av.: yes
 - Active: yes
 - QoS-Par.: TP, D, ...
 - ID: 2
 - Type: WLAN
 - Av.: no
 - Active: no
 - QoS-Par.: TP, D, ...

- **Connection Table**
 - Dest.: IP1
 - Port: 5005
 - QoS-F: 1111
 - QoS-P: TP1, ...
 - IF: 1
Signaling within the Client Architecture

Communication Provider

- **Application Profiles**
 - Prot.: HTTP
 - Service: BE
 - TP, D, DV, ER

- **User Profiles**

- **Network Profiles**
 - ID: 1
 - Type: UMTS
 - Av.: yes
 - Active: yes
 - QoS-Par.: TP, D, ...
 - ID: 2
 - Type: WLAN
 - Av.: yes
 - Active: yes
 - QoS-Par.: TP, D, ...

- **Connection Table**
 - Dest.: IP1
 - Port: 5005
 - QoS-F: 1111
 - QoS-P: TP1, ...
 - IF: 2

APIs (Socket, QoS, RAS, ...)

- **IP Layer**
 - UDP
 - TCP

Mobility Manager (MIP / IPSec)

- **Communication API**

- **App. 1 (RTP)**

Driver (IF 1)

- **Driver (IF 2)**

Communication Provider
Signaling within the Client Architecture

Application Profiles

<table>
<thead>
<tr>
<th>Prot.</th>
<th>Service</th>
<th>TP</th>
<th>D</th>
<th>DV</th>
<th>ER</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP</td>
<td>BE</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
</tr>
</tbody>
</table>

User Profiles

Network Profiles

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>Av.</th>
<th>Active</th>
<th>QoS-Par.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>UMTS</td>
<td>yes</td>
<td>yes</td>
<td>TP, D, ...</td>
</tr>
<tr>
<td>2</td>
<td>WLAN</td>
<td>yes</td>
<td>yes</td>
<td>TP, D, ...</td>
</tr>
</tbody>
</table>

Connection Table

<table>
<thead>
<tr>
<th>Dest.</th>
<th>Port</th>
<th>QoS-F</th>
<th>QoS-P</th>
<th>IF</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP1</td>
<td>5005</td>
<td>1111</td>
<td>TP1,...</td>
<td>2</td>
</tr>
</tbody>
</table>
Current Prototype Implementation

- Modified Dynamics Mobile IP Client with Vertical Handover capability based on user specified priority (e.g. 1. WLAN, 2. GPRS/GSM, 3. UMTS)
- Only limited Monitoring of all QoS parameters on available Network Interfaces possible
- User can specify Network Selection Priority
Improvements to Current Prototype

- “Real Time” Monitoring of QoS Parameters
 - Candidate Network selection based on theoretical and statistically past measured QoS values of available access networks.
 - Additional use of Protocol header information (e.g. RTCP header in RTP protocol)

- Performance Optimization
 - Performance optimization of delays incurred in interface timeout, candidate network discovery and IP Tunnel re-establishment.
 - Use of Additional QoS Indicators e.g. Wireless Signal Strength
 - Home Agent Modification: IP Tunnel setup on Multiple Network Interfaces.
Summary and Conclusion

- There is Increasing User Mobility and Availability of Heterogeneous (Wireless) Networks
- Loads of Work Done on QoS Provisioning Middleware – Some Proprietary, Mostly In-Efficient Solutions – No Middleware provides total inter-operability
- QoS Handling in highly Dynamic Heterogeneous Network Environments Hard To Achieve, Hence End-To-End QoS Seamless Provisioning
- Cost Billing and User Perceived QoS a Must
- …Potential of Location Information?

...Thank you for your Attention! Questions?